68 research outputs found

    Objects, worlds, and students: virtual interaction in education

    Get PDF
    The main aim of this study is to form a complete taxonomy of the types of interactions that relate to the use of a virtual world for engaging learning experiences, when blended and hybrid learning methods are to be used. In order to investigate this topic more accurately and effectively, we distinguish four dimensions of interactions based on the context in which these occur, and the involved parts: in-world and in-class, user-to-user and user-to-world interactions. In order to conduct investigation into this topic and form a view of the interactions as clear as possible, we observed a cohort of 15 undergraduate Computer Science students while using an OpenSim-based institutionally hosted virtual world. Moreover, we ran a survey where 50 students were asked to indicate their opinion and feelings about their in-world experience. The results of our study highlight that educators and instructors need to plan their in-world learning activities very carefully and with a focus on interactions if engaging activities are what they want to offer their students. Additionally, it seems that student interactions with the content of the virtual world and the in-class student-to-student interactions, have stronger impact on students’ engagement when hybrid methods are used

    Designing an engaging learning universe for situated interactions in virtual environments

    Get PDF
    A thesis submitted to the University of Bedfordshire, in partial fulfilment of the requirements for the degree of Doctor of Philosophy (PhD)Studies related to the Virtual Learning approach are conducted almost exclusively in Distance Learning contexts, and focus on the development of frameworks or taxonomies that classify the different ways of teaching and learning. Researchers may be dealing with the topic of interactivity (avatars and immersion are key components), yet they do so they mainly focusing on the interactions that take place within the virtual world. It is the virtual world that consists the primary medium for communication and interplay. However, the lines are hard to be drawn when it comes to examining and taxonomising the impact of interactions on motivation and engagement as a synergy of learners’ concurrent presence. This study covers this gap and sheds light on this lack—or, at least, inadequacy—of literature and research on the interactions that take place both in the physical and the virtual environment at the same time. In addition, it explores the impact of the instructional design decisions on increasing the learners’ incentives for interplay when trying to make sense of the virtual world, thus leading them to attain higher levels of engagement. To evaluate the potential of interactions holistically and not just unilaterally, a series of experiments were conducted in the context of different Hybrid Virtual Learning units, with the participation of Computer Science & Technology students. One of the goals was to examine the learners’ thoughts and preconceptions regarding the use of virtual worlds as an educational tool. Then, during the practical sessions, the focus was placed on monitoring students’ actions and interactions in both the physical and the virtual environment. Consequently, students were asked as a feedback to report their overall opinion on these actions and interactions undertaken. The study draws a new research direction, beyond the idea of immersion and the development of subject-specific educational interventions. The conclusions provide suggestions and guidelines to educators and instructional designers who wish to offer interactive and engaging learning activities to their students, as well as a taxonomy of the different types of interactions that take place in Hybrid Virtual Learning contexts

    A Data-Driven Approach to Compare the Syntactic Difficulty of Programming Languages

    Get PDF
    Educators who teach programming subjects are often wondering “which programming language should I teach first?”. The debate behind this question has a long history and coming up with a definite answer to this question would be farfetched. Nonetheless, several efforts can be identified in the literature wherein pros and cons of mainstream programming languages are examined, analysed, and discussed in view of their potential to facilitate the didactics of programming concepts especially to novice programmers. In line with these efforts, we explore the latter question by comparing the syntactic difficulty of two modern, but fundamentally different, programming languages: Java and Python. To achieve this objective, we introduce a standalone and purely data-driven method which stores the code submissions and clusters the errors occurred under the aid of a custom transition probability matrix. For the evaluation of this model a total of 219,454 submissions, made by 715 first-year undergraduate students, in 259 unique programming exercises were gathered and analysed. The results indicate that Python is an easier-to-grasp programming language and is, therefore, highly recommended as the steppingstone in introductory courses. Besides, the adoption of the described method enables educators to not only identify those students who struggle with coding (syntax-wise) but further paves the pathway for the adoption of personalised and adaptive learning practices

    Integration of educational technology during the Covid-19 pandemic: An analysis of teacher and student receptions

    Get PDF
    This study analyzes the integration of an educational technology platform and relates the difficulties faced amidst the Covid-19 pandemic. Initially, we sought to identify the chief barriers educators face when considering the adoption of Information and Communication Technology (ICT). Factors influencing primary and secondary education teachers’ (n = 15) and students’ (n = 335) perspectives on ICT integration for mathematics instruction were identified and analyzed from the perspective of different contexts (school vs home) and circumstances (in-person vs remote learning). Although we acknowledge the need for immediate decisions by educational stakeholders to facilitate online learning, our findings indicate the necessity of (a) careful examination of the features of potential platforms or tools and (b) a trial of such features prior to integration within an educational system. From an instructional design perspective, educational technologists should pay special attention to the degree of gamification, especially beyond the primary school level, as it may negatively impact incentives for student interaction and engagement. Where possible, the integration of technology should be driven by pedagogical goals and not technological pressures.</p

    The Effects of Machinima on Communication Skills in Students with Developmental Dyslexia

    Get PDF
    Many research efforts in the international literature have been conducted to investigate various fundamental issues associated with communication skills cultivation of students with developmental dyslexia. However, little is known when it comes to the impact that 'immersive technologies', such as three-dimensional virtual worlds, without considering any exploration of their impact to assist boys and girls with developmental dyslexia cultivate communication skills. Motivated by this inadequacy in the literature, the purpose of this study is to explore the effectiveness of the machinima approach, created via OpenSimulator and Scratch4SL, for students with developmental dyslexia in vocabulary learning and practicing. This embedded mixed-methods research was conducted over a four-week timetable in-class course, with forty students (n = 40) aged 10-12 years old. All students were equally separated into two groups in line with their gender. Boys and girls were encouraged to unfold the communication skills developed (i.e., spelling, writing, reading) by creating their own stories, after viewing educational videos and machinima scenes, before and after the treatment. The results indicate that machinima positively affected students' learning outcomes and achievements. Machinima can improve immediate knowledge gains in boys compared to girls to purposefully translate their cognitive thinking into storytelling, when problem-solving situations through simulated realism are considered. This study also offers insights for educational implications and design guidelines for machinima creation, providing empirical evidence on its effect on the participants' linguistics understanding and communication skills for language learning in girls and boys with developmental dyslexia

    Teacher Perceptions on Virtual Reality Escape Rooms for STEM Education

    Get PDF
    Science, technology, engineering, and mathematics (STEM) is a meta-discipline employing active, problem-centric approaches such as game-based learning. STEM competencies are an essential part of the educational response to the transformations caused by the fourth industrial revolution, spearheaded by the convergence of multiple exponential technologies. Teachers' attitude is a critical success factor for any technology-enhanced learning innovation. This study explored in-service teachers' views on the use of a digital educational escape room in virtual reality. Forty-one (n = 41) K-12 educators participated in a mixed research study involving a validated survey questionnaire instrument and an online debriefing session in the context of a teacher training program. The key findings revealed that such alternative instructional solutions can potentially enhance the cognitive benefits and learning outcomes, but further highlighted the shortcomings that instructional designers should consider while integrating them in contexts different than the intended. In line with this effort, more systematic professional development actions are recommended to encourage the development of additional teacher-led interventions

    A Systematic Literature Review on the User Experience Design for Game-Based Interventions via 3D Virtual Worlds in K-12 Education

    Get PDF
    A substantial body of literature has well-documented and demonstrated the potential of using three-dimensional (3D) virtual worlds (VWs) across various learning subjects and contexts in primary and secondary (K-12) education. However, little is known when it comes to issues related to child-interaction research and the impact that design decisions have on the user experience (UX), especially when game-based learning approaches are employed in 3DVWs. Hence, in this systematic literature review, we appraise and summarize the most relevant research articles (n = 30) conducted in K-12 settings, published between 2006–2020 and that elicit information related to (a) the interaction design (ID) of game events and trends associated with game elements and features that were utilized for the development and creation of game prototypes, (b) the research methods which were followed to empirically evaluate their teaching interventions, and (c) the design-related issues and factors affecting ID and UX by identifying the most frequent set of learning and game mechanics that were adopted in various game prototypes in different learning subjects. The vast majority of game prototypes enhanced students’ engagement and participation, affecting their achievements positively. This systematic literature review provides clear guidelines regarding the design decisions that educational stakeholders should consider, and provides recommendations on how to assess and evaluate the students’ learning experience (i.e., performance, achievements, outcomes) using 3DVWs.</p

    A Learning Analytics Conceptual Framework for Augmented Reality-Supported Educational Case Studies

    Get PDF
    The deployment of augmented reality (AR) has attracted educators' interest and introduced new opportunities in education. Additionally, the advancement of artificial intelligence has enabled educational researchers to apply innovative methods and techniques for the monitoring and evaluation of the teaching and learning process. The so-called learning analytics (LA) discipline emerged with the promise to revolutionize traditional instructional practices by introducing systematic and multidimensional ways to improve the effectiveness of the instructional process. However, the implementation of LA methods is usually associated with web-based platforms, which offer direct access to learners' data with minimal effort or adjustments. On the other hand, the complex nature of immersive technologies and the diverse instructional approaches which are utilized in different scientific domains have limited the opportunities for research and development in this direction. Within these research contexts, we present a conceptual framework that describes the elements of an LA process tailored to the information that can be gathered from the use of educational applications, and further provide an indicative case study for AR-supported educational interventions. The current work contributes by elucidating and concretizing the design elements of AR-supported applications and provides researchers and designers with guidelines on how to apply instructional strategies in (augmented) real-world projects

    The effects of augmented reality-supported instruction in tertiary-level medical education

    Get PDF
    A significant body of the literature has documented the potential of Augmented Reality (AR) in education, but little is known about the effects of AR-supported instruction in tertiary-level Medical Education (ME). This quasi-experimental study compares a traditional instructional approach with supplementary online lecture materials using digital handout notes with a control group (n = 30) and an educational AR application with an experimental group (n = 30) to investigate any possible added-value and gauge the impact of each approach on students' academic performance and training satisfaction. This study's findings indicate considerable differences in both academic performance and training satisfaction between the two groups. The participants in the experimental group performed significantly better than their counterparts, an outcome which is also reflected in their level of training satisfaction through interacting and viewing 3D multimedia content. This study contributes by providing guidelines on how an AR-supported intervention can be integrated into ME and provides empirical evidence on the benefits that such an approach can have on students' academic performance and knowledge acquisition. Practitioner notes What is already known about this topic Several studies have applied various Augmented Reality (AR) applications across different learning disciplines. The effects of AR on students' perceptions and achievements in higher education contexts is well-documented. Despite the increasing use of AR-instruction in Medical Education (ME), there has been no explicit focus on AR's effects on students' academic performance and satisfaction. What this paper adds This quasi-experimental study compares the academic performance and training satisfaction of students in an experimental group (AR) and a control group (handout notes). This study provides instructional insights into, and recommendations that may help students achieve better academic performance in AR-supported ME courses. The experimental group reported greater training satisfaction than their counterparts. Implications for practice and policy Students who followed the AR-supported instruction achieved better academic performance that those in the control group. AR-supported interventions encourage active learning and lead to significant performance improvement. The experimental group outperformed the control group in academic performance and training satisfaction measurements, despite the lower experimental group's lower pre-test performance scores

    Risk factors for tuberculosis in dialysis patients: a prospective multi-center clinical trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Profound alterations in immune responses associated with uraemia and exacerbated by dialysis increase the risk of developing active tuberculosis (TB) in chronic haemodialysis patients (HDPs). In the current study, was determined the impact of various risk factors on TB development. Our aim was to identify which HDPs need anti-TB preventive therapy.</p> <p>Methods</p> <p>Prospective study of 272 HDPs admitted, through a 36-month period, to our institutions. Specific Relative Risk (RR) for TB was estimated, considering age matched subjects from the general population as reference group. Entering the study all patients were tested with tuberculin (TST). Using Cox's proportional hazard model the independent effect of various risk factors associated with TB development was estimated.</p> <p>Results</p> <p>History of TB, dialysis efficiency, use of Vitamin D supplements, serum albumin and zinc levels were not proved to influence significantly the risk for TB, in contrast to: advanced age (>65 years), BMI, diabetes mellitus, tuberculin reactivity, healed TB lesions on chest X-ray and time on dialysis. Elderly (>70 years old) HDPs (Adjusted RR 25.3, 95%CI 20.4-28.4, P < 0.02), diabetics (Adj.RR 25.3, 95%CI 17.2-21.1, P < 0.03), underweighted (Adj.RR 72.3, 95%CI 65.2-79.8 P < 0.001), tuberculin responders (Adj.RR 41.4, 95%CI 37.9-44.8, P < 0.03), HDPs with fibrotic lesions on chest x-ray (Adj.RR 82.3, 95%CI 51.3-95.5, P < 0.03) and those treated with haemodialysis for < 12 months (Adj.RR 110.0, 95%CI 97.4-135.3, P < 0.001), presented significantly higher specific RR for TB even after adjusting for the effect of the remaining studied risk factors.</p> <p>Conclusion</p> <p>The above mentioned factors have to be considered by the clinicians, evaluating for TB in HDPs. Positive TST, the existence of predisposing risk factors and/or old TB lesions on chest X-ray, will guide the diagnosis of latent TB infection and the selection of those HDPs who need preventive chemoprophylaxis.</p
    • …
    corecore